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[1] Methane mixing ratios measured at a tall tower are compared to model predictions to
estimate surface emissions of CH4 in Central California for October–December 2007
using an inverse technique. Predicted CH4 mixing ratios are calculated based on
spatially resolved a priori CH4 emissions and simulated atmospheric trajectories. The
atmospheric trajectories, along with surface footprints, are computed using the Weather
Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian
Transport (STILT) model. An uncertainty analysis is performed to provide quantitative
uncertainties in estimated CH4 emissions. Three inverse model estimates of CH4

emissions are reported. First, linear regressions of modeled and measured CH4 mixing
ratios obtain slopes of 0.73 ± 0.11 and 1.09 ± 0.14 using California-specific and
Edgar 3.2 emission maps, respectively, suggesting that actual CH4 emissions were about
37 ± 21% higher than California-specific inventory estimates. Second, a Bayesian
‘‘source’’ analysis suggests that livestock emissions are 63 ± 22% higher than the a priori
estimates. Third, a Bayesian ‘‘region’’ analysis is carried out for CH4 emissions from
13 subregions, which shows that inventory CH4 emissions from the Central Valley are
underestimated and uncertainties in CH4 emissions are reduced for subregions near the
tower site, yielding best estimates of flux from those regions consistent with ‘‘source’’
analysis results. The uncertainty reductions for regions near the tower indicate that a
regional network of measurements will be necessary to provide accurate estimates
of surface CH4 emissions for multiple regions.
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1. Introduction

[2] Changes in atmospheric methane play an essential
role in Earth’s climate. CH4 is now associated with a direct
radiative forcing of �0.48 Wm�2 [IPCC, 2007] and an
indirect radiative forcing of �0.13 Wm�2 [Lelieveld et al.,
1998], which accounts for about ½ of the non-CO2 radiative
forcing (0.98 W m�2 in 2004 [Hofman et al., 2006]) and
about ¼ of the total radiative forcing (2.64 W m�2 from
IPCC [2007]) from all greenhouse gases (GHGs). It has
been argued that reducing anthropogenic emissions of
methane may be an important component of an initial
strategy for avoiding the most severe impacts of global

warming [Hansen et al., 1998; Hansen, 2004; Shindell et
al., 2005]. In particular, reduction of anthropogenic methane
emissions may be possible (e.g., improving CH4 recovery
from landfills and waste treatment, reducing industrial
emissions, and improving agricultural practices) [Harriss,
1994]. In view of methane’s role in the climate system,
increased attention has been brought recently to assessing
CH4 sources [Gimson and Uliasz, 2003; Miller and Tans,
2003; Houweling et al., 2006; Kort et al., 2008].
[3] In California, total GHG emissions in 2004 were

approximately 480 MMT CO2 equivalent, with CH4 contrib-
uting approximately 6% [CARB, 2007]. Now that California
has passed Assembly Bill 32, which requires that green-
house gases emissions be reduced to 1990 levels by 2020,
careful accounting of current CH4 emissions and of their
future reductions is essential. Unfortunately, current inven-
tory and model-based estimates of CH4 emissions are uncer-
tain because many of the factors controlling emissions are
poorly quantified. Atmospheric measurements and inverse
modeling may provide an independent method to quantify
local to regional CH4 emissions from California.
[4] Atmospheric inverse methods to estimate the surface

CH4 fluxes from in situ and remotely sensed CH4 mixing
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ratio measurements and modeled wind fields have been
widely applied at both global and regional scales [Hein et
al., 1997; Houweling et al., 1999; Vermeulen et al., 1999;
Bergamaschi et al., 2000, 2005, 2007; Dentener et al.,
2003; Gimson and Uliasz, 2003; Manning et al., 2003;
Mikaloff Fletcher et al., 2004a, 2004b; Chen and Prinn,
2006; Kort et al., 2008]. In general, the components of
atmospheric inverse emission estimates are CH4 mixing ratio
measurements, an atmospheric transport model (including
chemistry for global simulations), in some cases a priori
estimates for CH4 emissions and sinks or their correlation
structure, and a statistical technique to minimize differences
between measured and predicted CH4 mixing ratios. To
estimate CH4 emissions and their associated uncertainties,
errors from each of these components should be accounted
for and formally propagated through the inversion process.
[5] In this study, we employ an approach originally

developed to estimate regional CO2 emissions [Gerbig et
al., 2003a, 2003b] that combines calculation of surface
footprints [Lin et al., 2004] with procedures to estimate
transport model uncertainty [Lin and Gerbig, 2005] using
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model. Of particular relevance to our work, Kort et al.
[2008] recently used observations of CH4 and N2O from an
airborne platform in combination with STILT to infer CH4

and N2O emissions from the continental interior of North
America in May–June 2003. Our study also uses STILT,
but applies it to a smaller model domain at finer spatial and
temporal resolutions, taking advantage of unique computa-
tional benefits offered by the Lagrangian approach.
[6] To address the problem of estimating CH4 emissions

from different sources in Central California, we conducted
coordinated CH4 measurements and modeling as part of the
California Greenhouse Gases Emission Measurement
(CALGEM) project. Section 2 describes the methods for
the measurements of CH4 mixing ratios, profiler-based
estimates of wind fields and boundary layer heights, spa-
tially resolved a priori CH4 emission maps, meteorological
transport fields and resulting surface footprints, an analysis
of measurement and model errors, and the Bayesian inverse
model used to estimate CH4 emissions. Section 3 describes
the results of the measurements, bias corrections and error
estimates, and the best estimates of CH4 surface emissions
implied by the measurements. Section 4 discusses the
estimates of CH4 emissions in the context of current
inventories, examines the spatial region in which the tower
measurements effectively constrain CH4 emissions, and
concludes with initial recommendations for additional mea-
surement sites to constrain other important emission regions
in California.

2. Data and Methods

2.1. CH4 Measurements

[7] The CH4 measurements were made at 91 and 483 m
on a tall tower near Walnut Grove, CA (WGC, 121.49�W,
38.27�N, 0 m above sea level), beginning in September
2007. The measurements were made using a sampling and
analysis system combining pumps, air driers, and three gas
analyzers. Briefly, air samples are drawn continuously from
the different heights on the tower, are partially dried by a
condensing system that lowers water vapor to a 5�C dew

point, are sequentially applied on a 5 minute interval to a
temperature stabilized membrane drier (Purmapure Inc.)
which dries air to a �33�C dew point, and then are supplied
to the gas analyzers. The first 4.5 minutes of each measure-
ment interval are used to allow equilibration of the gas
concentrations and instrument response, while the last
30 seconds is used as the measurement interval. In particular,
CH4 is measured using a cavity ring-down spectrometer
(Picarro EnviroSense 3000i) with an accuracy and precision
of approximately 0.3 ppb in the 30 second averaging
interval. To quantify and correct instrument drifts, the offset
is measured and corrected every ½ hour using a reference
gas, while the gain (and linearity) is checked and corrected
every 6 hours using 4 NOAA gas primary standards. In
addition, flask samples were collected twice daily (1000 and
2200 hr GMT) from a separate sample line at the 91 m level
and analyzed at NOAA-ESRL. To provide additional qual-
ity assurance, the in situ CH4 measurements were compared
with the flask measurements. This redundancy allows the
detection of small (�ppb) sampling errors. In general, the
difference between in situ and flask analyses was consistent
with the precision of the in situ instrument. During some
periods, particularly during late night and early morning,
variability in CH4 mixing ratios was larger. For these
periods, the difference between flask the in situ CH4

measurements was generally consistent with the standard
deviation of the in situ CH4 measurements averaged over a
30 minute window centered on the flask sample.
[8] Figure 1 shows 3-hour averages of measured CH4

mixing ratios at 91 m (black) and 483 m (red) in October
2007. Diurnal cycles due to changing boundary layer height
are apparent in the data. The daily maximum CH4 mixing
ratio measured at 91 m often occurs when the minimum is
obtained at 483 m. This would be expected to occur in cases
when the boundary layer lies between 91 and 483 m,
trapping surface emissions within a shallow layer that is
measured by 91 m sample height, while the 483 m sample
height observes comparatively decoupled background air. In
the following work, we will use the daily minimum CH4
measurements at 483 m to provide a check on the CH4

background analysis. Moreover, we limited the inverse
model study to only include measurements collected during
well-mixed periods. Henceforth, we define the well-mixed
periods by using the criteria that the difference of measure-
ments at 91 m and 483 m are less than 100 ppb, as shown by
the black points in Figure 1. This criteria will also be
evaluated in the following analysis.

2.2. Wind Profiler Measurements

[9] To quantify uncertainties in modeled atmospheric
transport, hourly boundary layer heights and vertical pro-
files of winds were obtained from a radar wind profiler
(RWP) operated by the Sacramento Metropolitan Air Quality
Management District. The profiler is located (38.30�N,
121.42�W) within 8 km of the tower used for the CH4

measurements. Given the level terrain of the Sacramento
delta region, we expect that errors in modeled winds and
PBL heights for the region surrounding the tower can be
accurately assessed by comparing the wind profiler measure-
ments with corresponding meteorological simulations for
profiler (winds) and tower (PBL) locations. The RWP
acquires data in two different settings, high-resolution and
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low-resolution mode with vertical resolutions of 60 m and
105 m respectively. Boundary layer heights were estimated
from subhourly RWP vertical velocity and returned signal
strength (signal-to-noise ratio) data using objective algo-
rithms and qualitative analysis following techniques found
in the works of Wyngaard and LeMone [1980], Bianco and
Wilczak [2002], and Bianco et al. [2008]. In the used
configuration, the RWP can detect boundary layer heights
from about 150 m to 4000 m with an accuracy of ±200 m
[Dye et al., 1995].

2.3. The a Priori CH4 Emissions

[10] We used two methods to estimate CH4 emissions. As
a base case, we used the North American maps of total
anthropogenic CH4 from the EDGAR 3.2 model with 1 �
1 degree spatial resolution [Olivier et al., 2005]. To provide
finer spatial resolution inside California, we also estimated
California CH4 emissions separately for six sources sectors:
landfills (LF), livestock (LS), natural gas production and
use (NG), petroleum refining (PL), crop agriculture (CP),
and wetlands (WL). CH4 emissions from landfills were
estimated by the California Air Resources board (L. Hunsaker,
private communication, 2008) using IPCC methods [IPCC,
2006], which is driven by landfill specific waste application
statistics from the CAWaste Management Board [e.g., Carr,
2004] and site-specific estimates of CH4 recovery. CH4

from livestock was estimated using United States Depart-
ment of Agriculture (USDA) county level animal stocking
densities [Census, 2002] and animal specific emission
factors for dairy and beef cattle separately [Franco, 2002].
CH4 from natural gas production and use and from petro-
leum refining activities were estimated as the difference of
total minus reactive hydrocarbon (typically between 0.2
and 0.4 of the total) emissions estimated from the California
Air Resources Board (CARB) emission criteria pollutant
emission inventory for those source sectors (http://www.
arb.ca.gov/app/emsinv/fcemssumcat2006.php). CH4 emis-

sions from crop agriculture were assumed to follow emis-
sions from the DNDC model for an average climate year
with high irrigation as described by Salas et al. [2006]. CH4

emissions from wetlands were assumed to follow the
National Aeronautics and Space Administration Carnegie-
Ames-Stanford Approach (NASA-CASA) estimates from
Potter et al. [2006]. Although some of these sources are
expected to vary on a seasonal basis, we calculated mean
emissions and did not attempt to resolve temporal variations
over the relatively short period of this three months study.
Maps of the a priori CH4 emissions are shown in
Figures 2a–2f for these six California-specific source sec-
tors. For comparison, Figure 2g shows total EDGAR 3.2
emissions for the Western United States, while Figure 2h
shows the sum of the California-specific CH4 emissions.
Last, Figure 2i shows a set of California subregions that
roughly correspond to air basins that are nearby or distant
from the measurement locations and will be used in fol-
lowing analysis. Table 1 summarizes the CH4 emissions
from different California-specific sources in the 13 subre-
gions. CH4 emissions are scaled to equivalent CO2 forcing
using a global warming potential of 25 (gCO2eq gCH4

�1

[IPCC, 2007]). The total of the California-specific emis-
sions is similar to total CH4 emissions (�31 MMT CO2eq)
reported by the California Air Resource Board [CARB,
2007], but is approximately half the total emissions from
California pixels in the Edgar 3.2 inventory. Inspection of
the Edgar 3.2 emissions shows that the largest sources
are from natural gas (22.5 MMT CO2eq) and landfills
(19.3 MMT CO2eq), suggesting very different assumptions
about emissions from these sources. To assign an uncer-
tainty to the a priori emissions, we follow previous work on
uncertainty analysis [USEPA, 2004; Farrell et al., 2005] and
assign a 30% uncertainty to each of emissions sources.
We consider the uncertainties in US total CH4 emissions
only a rough estimate to the uncertainties for subregions
of California (and over the time period of this study)

Figure 1. CH4 mixing ratios measured at 91 m (black) and 483 m (gray) at the WGC tower. Only data
(black points) obtained during well-mixed periods (defined as when the difference between
measurements at 91 and 483 m are less than 100 ppb) are used in this study.
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because the 30% estimate was derived for more aggregated
emissions over annual cycles and the entire continental US.

2.4. WRF-STILT Model

[11] As mentioned in the Introduction, the work presented
in this paper employs the STILT model, run in the time-
reversed (receptor-oriented) mode, as the atmospheric trans-
port model. STILT is a Lagrangian Particle Dispersion
Model (LPDM) that has been specifically developed and
applied to regional simulations and inverse flux estimates

for CO2, other greenhouse gases, and CO. Its detailed
description is provided elsewhere [Lin et al., 2003, 2004;
Gerbig et al., 2003a; Matross et al., 2006; Kort et al., 2008;
Miller et al., 2008] and, consequently, only the most
pertinent features will be summarized here. As in all
LPDMs, transport in STILT includes both advective and
turbulent components, with turbulence being responsible for
the dispersion of particles. In this application, given input
meteorological data, the STILT model transports ensembles
of 100 particles (air parcels) backward in time 5 days for a

Figure 2. The a priori emission maps and regions in California. (a–f) The CA-specific surface CH4

emissions from different sources. (g) Anthropogenic surface CH4 emissions from Edgar 3.2. (h) The sum
of maps of Figures 2a–2f specific to California. (i) An illustration of the 13 California subregions
considered in the region analysis. The tower location is marked with a ‘‘x’’.
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receptor point (WGC site here). We calculate the response of
the target gas concentration at the receptor point to surface
sources (‘‘footprint’’), in units of ppb/(nmol m�2 s�1). The
footprint, which represents the adjoint of the transport field,
is calculated by counting the number of particles in a
surface-influenced region (defined as ½ of the estimated
PBL height in the STILT model, for example, see Gerbig et
al. [2003a] and Kort et al. [2008]) and the time spent in the
region (for details, see Lin et al. [2003]). When multiplied
by the a priori field of surface flux, the footprint gives the
associated contribution to the mixing ratio measured at the
receptor, hence the footprints can be used to estimate
parameters of the source functions and their respective
uncertainties.
[12] We calculate the footprints relating surface fluxes to

measured CH4 mixing ratios using the meteorological
output from a customized version of the Weather Research
and Forecasting model [Skamarock et al., 2005] to drive
STILT. This combined model will henceforth be referred to
as WRF-STILT. Specifically, the WRF model version 2.2
has been modified to output time-averaged (hourly in this
study) values of the mass-coupled velocities, which signif-
icantly improve mass conservation in STILT (compared
with the instantaneous advective velocities), as well as
convective mass fluxes that are used directly in the STILT
calculations. The main physical options are set as following:
(1) Radiation: RRTM scheme [Mlawer et al., 1997] for the
longwave and Goddard scheme [Chou and Suarez, 1994]
for the shortwave; (2) Planetary Boundary Layer: Yonsei
University (YSU) scheme coupled with the NOAH land
surface model and the MM5 similarity theory based surface
layer scheme. (3) Microphysics: Purdue Lin scheme [Lin et
al., 1983; Chen and Sun, 2002] (4) Convection: Grell-
Devenyi ensemble mass flux scheme [Grell and Devenyi,
2002]. The initial and boundary meteorology conditions
for WRF are provided by the North American Regional
Reanalysis (NARR [Mesinger et al., 2006]). A one-
way nesting WRF running with 3 nest levels is used for
the meteorology simulations around the WGC tower loca-
tion, which is shown in Figure 3 (Domain 1: �149.16� <
lon < �102.21�, 17.82� < lat < 50.53� on a 40 km grid;
Domain 2:�123.53� < lon <�120.66�, 36.76� < lat < 38.94�
on a 8 km grid; Domain 3: �121.71� < lon < �121.23�,
38.09� < lat < 38.45� on a 1.6 km grid). The vertical

resolution is taken from the input meteorology from NARR
with 30 layers. Each day was simulated separately using
30-hour run (including 6 hours from the previous day for
spin-up) with hourly output. Growth in transport model
errors were minimized by nudging the forecast fields to the
gridded NARR analysis fields every 3 hours.

2.5. WRF-STILT Transport Errors

[13] As a first approximation to evaluate the transport
errors in the WRF-STILT predictions of surface influence
footprints, we compared the modeled estimates of WRF
winds and WRF-STILT boundary layer heights (Zi) with
corresponding profiler measurements of wind velocity and
Zi. Errors in modeled winds are estimated by comparing
WRF predictions with profiler measurements of the u and v
wind components at a height of 137 m, close to the height of
the air sampling. Using data from the October to December
2007, the root mean square (RMS) errors in horizontal
winds at 137 m are 2.21 (su) and 2.86 m s�1 (sv) for the

Table 1. A Priori CH4 Emissions (MMT CO2eq) From Six Different Sources and 13 California Regions in Figure 2i

CH4 (MMT CO2eq) CP LF LS NG PL WL CA-specific Edgar3.2

Region 01 0.04 0.02 0.04 0.00 0.02 0.06 0.18 0.92
Region 02 0.01 0.04 0.15 0.00 0.10 0.02 0.29 1.09
Region 03 0.01 0.05 0.20 0.01 0.20 0.02 0.45 1.74
Region 04 0.04 0.10 0.18 0.00 0.17 0.05 0.48 1.56
Region 05 0.05 0.02 0.39 0.00 0.11 0.07 0.57 1.76
Region 06 0.02 0.40 0.51 0.36 0.62 0.04 1.81 4.30
Region 07 0.01 0.74 0.31 0.67 1.50 0.02 3.25 5.95
Region 08 0.01 0.27 2.06 0.01 0.32 0.02 2.32 3.73
Region 09 0.02 0.26 0.24 0.13 0.37 0.02 0.96 3.48
Region 10 0.11 3.75 1.68 0.88 3.62 0.17 10.21 25.14
Region 11 0.02 0.13 0.19 0.01 0.10 0.02 0.47 1.09
Region 12 0.06 0.31 3.65 0.31 0.73 0.10 5.16 7.95
Region 13 0.01 0.06 0.06 0.19 0.19 0.02 0.53 1.07
Whole CA 0.42 6.15 9.66 2.57 8.03 0.63 27.46 59.78

Figure 3. Map grids showing the three model domains
used in the meteorological predictions and WGC tower
location ‘‘X’’ (�121.49, 38.26) of the measurements.
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u and v directions respectively. Some of this difference can
be attributed to the fact that profiler winds are measured at a
single site while the WRF winds are the averages over a
grid of 1.6 � 1.6 km. We note that the RMS error decreased
by approximately a factor of 2 between 137 m and 1000 m
above the ground, though the decrease was nonlinear with
most of the decrease occurring between 137 and about
500 m. Henceforth, we assume errors in u and v are constant
with height and randomly distributed with an RMS magni-

tude of 3.6 m s�1, which is obtained as sV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u þ s2

v

p
.

[14] Measured and predicted daytime boundary layer
heights in October through December 2007 are shown in
Figure 4. Profiler data were selected to match the time of
the WRF predictions to within 1 hour. In addition, the
WRF-STILT simulations impose a lower limit value of
215 m on Zi, while the radar profiler has a minimum
detection height of 120 m. To avoid biasing the comparison
and make sure CH4 well mixed from surface till heights
above 483 m, we included WRF-STILT predictions of Zi
greater than 215 m in the analysis. The resulting best fit
geometric linear regression of WRF-STILT on radar profiler
PBL heights yields a slope of 1.25 ± 0.10 and intercept of
�138 ± 70 m. Based on this result, we obtain a scale factor
of 1/1.25 which is then applied to Zi when calculating
footprints using STILT. This result is similar to that found
in the work of Lin et al. [2003], where STILT predictions of
Zi were about 1.09 higher than Zi measurements at a site
in Wisconsin. After scaling STILT Zi by a factor of 1/1.25,
the RMS residual error between scaled WRF-STILT
and profiler Zi is reduced by a factor of 1.5 to �200 m,
roughly consistent with the estimated error in the profiler
measurements. In the following work we calculate particle
trajectories and resulting footprints using the scaled param-
eterization of PBL height. It is possible that an additional
error in the effective wind field may be introduced by the Zi
scaling for particles near the top of the boundary layer if

there is significant wind shear at that altitude but expect that
this is small compared to the first order errors already
identified for winds and PBL heights.

2.6. Footprints and Predicted CH4 Signals

[15] Particle trajectories were calculated using STILT
driven by the WRF winds. One hundred particles are
released every 3 hours (from UTC hour 00) at the WGC
tower and transported backward in time 5 days to insure a
majority of the particles reach positions representative of the
marine boundary layer. Footprints are then calculated from
the particle trajectories as in the work of Lin et al. [2004].
The time-averaged footprint is shown in Figure 5 for the
period between October and December in 2007. The high
footprint values within approximately the Central California
area near the tower site indicate that CH4 signals measured
at 91 m and 483 m at WGC will be strongly influenced by
the California emissions.
[16] Predicted local CH4 signals Cl(X r, tr) (index ‘‘l’’

denote local and ‘‘r’’ denote receptor) from land surface
emissions are calculated using the product of the footprint
maps and the a priori emission maps, as

Cl X r; trð Þ ¼
X
i;j;m

f X r; tr xi; yj; tm
�� �

� F xi; yj
� ��

; ð1Þ

where X r and tr are receptor (WGC tower) location and
time, f (X r, trjX, tm) is the footprint and F(xi, yj) is the
surface emission map at location (xi, yj) and time tm. The
total CH4 mixing ratio at the receptor can be expressed as

C X r; trð Þ ¼ Cl X r; trð Þ þ CBG X r; trð Þ; ð2Þ

Figure 4. Comparison of well-mixed daytime PBL
heights between radar profiler measurements and WRF-
STILT simulations in October through December 2007.

Figure 5. Averaged footprints for mixing ratio measure-
ments made at the tower location ‘‘X’’ (�121.49, 38.26).
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where CBG(Xr, tr) is the upstream CH4 background mixing
ratios.

2.7. Inversion Technique

[17] The posterior CH4 emissions were estimated by
optimizing scaling factors for the a priori CH4 emissions
to provide a best fit between measured and predicted CH4

mixing ratios. This was done in two ways: (1) as a standard
least square optimization of an overall scaling factor for all
land surface emissions and (2) in a Bayesian approach that
scales each source type or subregion separately and incor-
porates individual estimates for the uncertainties in different
a priori emissions.
[18] Combining equations (1) and (2), the difference

between measured and predicted background CH4 relates
to the surface emission flux as

C � CBG ¼ f F; ð3Þ

where f is footprints, F is surface CH4 emission, C and CBG

is CH4 mixing ratios from tower measurements and
background calculations, respectively. Assuming mixing
ratio measurements from local sources as y = C � CBG.
Following Gerbig et al. [2003a], we introduce a model
parameter or a state vector of scaling factors, l, for the
surface flux, F (l). The inversion adjusts the model
parameters l such that the modeled changes in CH4

concentrations are optimally consistent (in standard least
square sense) with the observed values. In the study of
surface CH4 emissions from different sources (‘‘source
analysis’’ hereafter), l represents the scaling factor for
different sources; in the study of surface CH4 emissions
from different regions (‘‘region analysis’’ hereafter), l
represents the scaling factor for different areas. For both the
‘‘source analysis’’ and ‘‘region analysis’’ study, F (l) is
linearly dependent on l:

F lð Þ ¼ fl ð4Þ

where f is the a priori emissions for different sources or

regions in this study.
[19] Using the same method as by Lin et al. [2004], the

analytical solutions to equations (3) and (4) are

l̂ ¼ KTS�1

e
K

� ��1

KTS�1

e
yþ S�1

prior
lprior

� �

Ŝl ¼ KTS�1

e
K þ S�1

prior

� ��1
ð5Þ

where K = f f, Se is measurement error covariance matrix

lprior and l̂ are the a priori and a posteriori vectors, and

S prior and Ŝl are the a priori and a posteriori error matrices

for l. Corresponding to our initial estimate of 30%
uncertainty in the CH4 emission maps, the initial value of
S prior is 0.09. Note that the measurements and a priori
emission error matrices are diagonal, equivalent to assum-
ing that the prior errors are uncorrelated. The measured
and predicted CH4 signals are computed and compared on a
3 hour interval.

2.8. Error Covariance Matrix

[20] The equivalent ‘‘measurement’’ error covariance
matrix Se is formed as the sum of different components

S
e
¼ S

part
þ S

aggr
þ S

TransWND
þ S

TransPBL
þ S

bkgd

þ S
eddy

þ S
ocean

ð6Þ

Here as in the work of Lin et al. [2004], the contribution of
instrumentation error in the CH4 measurements is assumed
to be random, uncorrelated, and negligible in magnitude
relative to the other sources of error, and hence not
considered further in the inverse model estimates. We
consider each of the terms in equation (6) below.
[21] The particle number error (Spart) is due to the finite

number of released particles at the receptor location. It can
be estimated by comparing the simulated signals from the
STILT running with release of 1000 particles and those from
the STILT running with release of 100 particles. Using the
WRF simulated meteorology in October 2007 and the total
a priori emission map, we found that the standard error is
about 3 ppb, indicating �5% particle number error. This
value is less than �13% particle number error for CO2

indicated by Gerbig et al. [2003a]. Considering the �5%
error determined by us here and �13% error determined
by Gerbig et al. for signals in the mixed-layer, Spart for
100 particles is assumed as 10% in this study. For all of
the following error analyses, we used 1000 particles in
order to minimize the effect of particle number error.
[22] The ‘‘aggregation error’’ (Saggr) arises from aggre-

gating heterogeneous fluxes within a grid cell into a single
average flux [Kaminski et al., 2001]. Gerbig et al. [2003b]
demonstrated that a rough estimate of the aggregation error
can be derived from the observed ‘‘representation error,’’
which is derived from the difference between a point
observation and a value averaged over a specific grid size
[Gerbig et al., 2003a]. Without multiple observation sta-
tions over a specific grid, we try to estimate the aggregation
error based on the a priori CH4 emissions. Although we do
not have high-resolution emission maps for all of the CH4

sources, we estimate aggregation error using landfill emis-
sions, which are fully resolved. Here the aggregation error is
estimated by comparing the unaggregated landfill signal
from to the landfill signal estimated after averaging emis-
sions over each county (the maximum aggregation used for
the other sources). The average aggregation error, estimated
as the RMS difference between the unaggregated and
aggregated signals, is 11% of the mean landfill signal.
[23] The transport error (STrans = STransWND + STransPBL)

denotes the errors in modeling transport, which can be
caused by the uncertainties in wind speeds and directions,
and the uncertainties in PBL heights. Following Lin and
Gerbig [2005], the transport error due to winds STransWND

is calculated as the RMS difference between signals pre-
dicted from simulations with and without input of an
additional stochastic component of wind error sV (3.6 m/s;
section 2.5) in STILT. The resulting RMS signal is equiv-
alent to 8% of the average predicted CH4 signal. This
estimate of uncertainty assumes that the wind error at the
radar profiler location can be used to represent the wind
error within the modeling domain. While we have not
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evaluated the wind errors for other locations, we note that
the 3.6 m/s wind error used here is comparable to the mean
wind error of 3.08 m/s, determined from radiosonde obser-
vations over the coterminous U.S. between 0 and 3 km in
altitude [Lin and Gerbig, 2005].
[24] Uncertainty due to errors in modeled PBL heights

STransPBL is estimated by propagating the residual error Zi

into the predicted CH4 signals. Here we use the estimate of
residual error in Zi determined from the comparison between
predicted WRF-STILT PBL height and PBL height mea-
sured with the wind profiler. The sensitivity of CH4 signal to
Zi is expressed as a first order perturbation in C as

g ¼ dC

dZi
ð7Þ

where g is estimated by calculating STILT footprints and
then variations in C for small perturbations in Zi. The error
due to error in Zi can then be estimated as

StransPBL ¼ DC

Ch i ¼
g �DZi

Ch i ð8Þ

where DZi is the residual error in WRF-STILT Zi, and hCi
is the mean total CH4 signal. Note that this error is calculated
for well-mixed conditions. Using equations (7) and (8), the
estimated transport error due to PBL uncertainties is 22%
of the mean signal.
[25] The background error (Sbkgd) is due to the uncertainty

in estimating the background contribution to the CH4

measurements at WGC 91 m. For this study, we estimate
the upstream background CH4 mixing ratio using the final
latitude of each particle as a lookup into the latitudinally
averaged marine boundary layer (MBL) CH4 for October–
December 2007 (NOAA Globalview CH4). Only time
points (>95% of the total) for which more than 80% of
the particles reached longitudes 1.5 degrees from the coast
were included in the study. We expect that the NOAA MBL
average will be a reasonable approximation for the CH4

background because it is heavily weighted to the Pacific and
the typical CH4 gradients between Pacific and Atlantic are
less than 10 ppb. We evaluated the error in CH4 background
using the daily minimum CH4 mixing ratio measured at
483 m. The reason that the daily minimum CH4 mixing ratio
at 483 m often reflects that of background air is because the
483 m sample height decouples from the surface at night
(when 91 m < Zi < 483 m) as indicated in Figure 1. A
comparison of the CH4 mixing ratios determined from the
NOAA MBL average and WGC 483 m minimum estimates
is shown as a function of time in Figure 6. Figure 6b shows
that there is no systematic bias, although the minimum CH4

mixing ratio at 483 m is occasionally enhanced relative to
the NOAA MBL average, likely due to local CH4 contri-
butions. We estimate the error due to CH4 background as the
RMS difference in Figure 6b, which is 15% of the mean
background-subtracted measurements at 91 m.
[26] The eddy flux error (Seddy) specifies the fluctuations

in CH4 mixing ratios due to contributions from turbulent
eddies. Gerbig et al. [2003a] observed it is �0.2 ppm for
CO2. For CH4 studied here, a value of 1% is assumed. The
error due to omitting ocean emissions (Socean) is assumed to
be negligible. To evaluate this assumption, we calculated
the expected CH4 signal from the Coal Point field near
Santa Barbara, the largest known coastal natural gas field
near California [Mau et al., 2007], and found the signals to
be less than 1 ppb.
[27] In order to combine the above errors from different

sources, we need to know their correlations, which are
unfortunately unknown. Assuming the errors from different
sources are independent, the above errors are combined in
quadrature to yield a total expected model prediction
mismatch error of 32%.

3. Results

3.1. CH4 Mixing Ratios

[28] Predicted CH4 signals and background-subtracted
measurements at 91 m are shown in Figure 7. As described

Figure 6. Time series of background CH4 mixing ratios, calculated from (a) the NOAA global
latitudinal average marine boundary layer (gray) and the daily minimum measured at 483 m (black) and
(b) the difference of these signals.
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in sections 2.1 and 2.8, data are selected to only include
times with well-mixed conditions and when background
CH4 can be reliably, which are shown as black points in
Figure 7. Diurnal cycles due to changing boundary layer
height and synoptic variations due to frontal passages are
apparent in the data. The data gap in early–mid December
resulted from a leak in the sampling system that was
diagnosed and repaired. The measured and predicted CH4

mixing ratios show similar temporal variations, indicating
partial success of the model. However, the predicted signals
do not always capture the large CH4 measurements, indi-
cating some combination of errors in the a priori emission
model (e.g., spatial pattern or limited resolution) and
atmospheric transport (e.g., wind fields, boundary layer
height).

3.2. Inferred Surface Emissions

[29] We compare the tower measurements and WRF-
STILT simulations at WGC site during winter (October–
December) 2007. Three analyses are reported here: (1) a
linear analysis for total CH4 emissions; (2) a ‘‘source
analysis’’ for the six CH4 source sectors; and (3) a ‘‘region
analysis’’ for thirteen regions in CA. For the linear analysis,
we employ a Chi-square linear regression analysis by
assuming equal relative errors of 32% in both variables.

For the ‘‘source analysis’’ and ‘‘region analysis,’’ the
Bayesian analysis from equations (7) and (8) is applied.
Note that the ‘‘region analysis’’ used the same a priori
spatial distributions of CH4 emissions as the ‘‘source
analysis,’’ and same total effective measurement errors of
32% are used in the following analyses.
3.2.1. Linear Regression Analysis
[30] Results of the regression analyses using California

specific emission applied to the October through December
2007 period are shown in Figures 8a and 8b. Without Zi
scaling (Figure 8a), the best fit slope between predicted and
measured CH4 mixing ratios is 0.46 ± 0.07. After applying
the Zi scaling to WRF-STILT (Figure 8b), the slope between
predicted and measured CH4 is 0.73 ± 0.11. The change in
slope between Figure 8a and Figure 8b demonstrates that
scaling the PBL heights affects the predicted CH4 signals,
and any residual uncertainty in PBL height should be
considered as a source of uncertainty in the Bayesian
analyses that follow. After the Zi scaling, the slope obtained
in Figure 8b suggests that the actual emissions are higher
than inventory estimates by a factor of 1.37 ± 0.21. We note
that the normalized Chi-square value for Figure 8b is 1.17,
suggesting that the estimated errors do not completely
explain the residual variance in the differences between
the predictions and measurements. CH4 signals based on

Figure 7. Background subtracted CH4 measurements (black line) and predictions (red line) from 91 m
as (top) a function of time and (bottom) their difference for well-mixed conditions (black points).
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Edgar 3.2 emissions are also simulated and compared with
the tower measurements in Figure 8c, yielding a slope of
1.09 ± 0.14. This slope is roughly consistent (p > 0.1 in a t
test) with the slope (0.92 ± 0.03) obtained by Kort et al.
[2008] in their comparison of measured and predicted CH4

signals using Edgar 3.2. However, the slopes obtained with
the California specific (Figure 8b) and Edgar (Figure 8c)
emissions are significantly different (p < 0.01), as might be
expected given the large difference in the a priori emissions
shown in Table 1. For the central California region, the total
emission estimated by Edgar 3.2 is about 75% more than
that estimated from California specific sources, which is
roughly consistent with the difference (�50%) of fitting
slopes between Figure 8b and Figure 8c.
[31] To evaluate the effect of the well-mixed data selec-

tion criteria, we also examined the slopes obtained with a
more stringent requirement that the difference between CH4

mixing ratio measured at 91 m and 483 m is less than
50 ppb. This subset of data are shown as triangles in
Figure 8. Using the selection criteria of 50 ppb in Figure 8
obtains a slope of 0.86 ± 0.17, which is quite consistent with
that obtained using the selection criteria of 100 ppb. The
following analyses include data based on the 100 ppb
selection criteria.

3.2.2. Bayesian Analysis
[32] The Bayesian ‘‘source’’ inverse analysis was carried

out for the six source sectors for October through December
2007. As shown in Figure 9a, the a posteriori scaling
factors for the crop agriculture (CP), landfill (LF), wetland
(WL), petroleum (PL), and natural gas (NG) are not
significantly different from unity (at 95% confidence).
The scaling factor for livestock is 1.63 ± 0.22, suggesting
the emissions from livestock are significantly (95% confi-
dence) larger than the a priori inventory estimates. The
Bayesian ‘‘region’’ inverse analysis of emissions from the
13 California regions is shown in Figure 9b. The a posteriori
uncertainties are noticeably reduced relative to the a priori
uncertainties only for regions 6, 7, and 8, which have a
strong influence on the CH4 measurements either because
the land surrounds the tower site (regions 6 and 8) or has a
teleconnection through the prevailing wind (region 7). The a
posteriori scaling factor for region 6 is 1.08 ± 0.06,
indicating that the posterior emissions agree well with the
a priori inventory estimates. Posterior scaling factors for
region 7 and 8 are 1.55 ± 0.17 and 1.37 ± 0.15 respectively,
indicating that the a posteriori emissions are greater than the
a priori estimates for these two regions.

Figure 8. Predicted versus measured CH4 obtained (a) using California specific emissions without Zi
correction, (b) with Zi correction, and (c) using Edgar 3.2 emissions with Zi correction. The symbols
indicate well-mixed periods when the difference between CH4 mixing ratios measured at 91 and 483 m
are less than 100 ppb (open circles) and less than 50 ppb (triangles), respectively.
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[33] After applying the scaling factors obtained from
Bayesian analyses, the posterior predicted CH4 mixing
ratios are compared with measurements in Figure 10.
Figure 10a shows the comparison for results from the
‘‘source analysis’’ with measurements. Compared to
Figure 8b (before inverse optimization), the fitting slope is
closer to unity, and the normalized Chi-square value is
slightly reduced from 1.17 to 1.11. This suggests that the
inverse optimization has slightly improved the agreement
between the measured and predicted CH4 signals but that on
order 10% of the variance remains unexplained. It is

possible that the apparent underestimation of the errors
may be due to positive correlation between the error sources
that we assumed independent. Similar results are obtained
for the region analysis, as shown in Figure 10b. In both
cases, the slopes after optimization are still slightly less than
unity, likely because of the weight on the a priori scaling
factors. We note that relaxing the a priori uncertainties on
the scaling factors from 30% to 50%, allows the optimiza-
tion to adjust the posterior scaling factors further from their
a priori values.

4. Discussion and Conclusions

[34] Here we discuss the impact of error in PBL height on
uncertainty in estimated CH4 emissions, the implications of
our results on estimated CH4 emissions from Central
California, and conclude with recommendations for addi-
tional measurement sites that would help quantify CH4

emissions from more regions in California.
[35] First, the results of this work highlight the need for

careful estimation and minimization of errors in the trans-
port model. Our work is really only a first step in this regard
because we have only evaluated wind and PBL height errors
for one site, albeit at the location where the CH4 measure-
ments were made. The comparison between the radar
profiler measurements and WRF-STILT predictions of
PBL height show a systematic overestimation in the
WRF-STILT predictions, while the sensitivity test shows
that predicted CH4 emission estimates are sensitive to PBL
height. The error in WRF-STILT predictions of PBL height
may be a result of imperfect land surface parameterization in
WRF that does not account for a suppression of PBL height
in the Central Valley. Possible causes for overestimation of
PBL height include the Pacific low over California’s interior
and low ratios of sensible to latent heat (Bowen ratios)
driven by agricultural irrigation as shown in recent model
studies of California [Kueppers et al., 2007; Lobel and
Bonfils, 2008]. Because of the limited amount of PBL
height data, the present work should be considered a first
step toward a more comprehensive analysis employing
profiler data from additional profiler sites and over longer

Figure 9. Inversion estimates for the (a) ‘‘source’’ sector
analysis and (b) ‘‘region’’ analysis. A priori and posterior
scaling factors for the six source sectors and 13 source
regions are shown with corresponding 68% confidence level
uncertainties.

Figure 10. Comparison of CH4 mixing ratios between measurements and predictions modified using
posterior scaling factors obtained from the (a) ‘‘source’’ analysis and (b) ‘‘region’’ analysis.
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periods. We expect that this effort will substantially improve
the fidelity of the WRF-STILT PBL predictions and hence
accuracy of GHG emission inversions.
[36] Second, the linear regression estimates suggest that

October–December CH4 emissions from Central California
are estimated to be 37 ± 21% higher than the annually
averaged California specific a priori inventories. Examining
the source sector results, the increase in overall emissions is
largely due to the 63 ± 22 (1s)% increase in estimated
emissions from livestock. State-wide a priori livestock
emission are 9.7 MMT CO2eq (see Table 1), which includes
5.6 MMT CO2eq from dairies and 4.1 MMT CO2eq from
other cattle. Scaling the a priori CH4 emissions from dairies
suggests that actual dairy emissions are 9.1 ± 1.3 MMT
CO2eq. This result is nominally consistent with or slightly
less than the results of a recent study by Salas et al. [2009],
which estimated total CH4 emissions from dairies in CA to
be approximately 9.8 MMT CO2eq. We note that the source
sector and regional analyses are consistent with each other
in that CH4 emission from region 8, which is dominated by
livestock, shows a large and statistically significant increase
relative to the a priori inventory. Some other sources also
showed smaller but not significant differences from inven-
tory estimates. For example, inferred CH4 emissions from
crop agriculture are smaller than the annually averaged
inventory, consistent to the expectation of higher CH4

emissions from the north-central Valley during the summer
due to flooded rice agriculture [Salas et al., 2006]. Finally,
the ‘‘region’’ analysis shows that emissions from regions 6,
7 and 8 are constrained by the measurements. This is because
they either surround the tower (i.e., regions 6 and 8) or have
a strong influence on air reaching the tower through
prevailing winds from the Bay Area to the Sacramento
Valley (i.e., region 7). This observation provides an insight
into the spatial domain that can be effectively investigated
with the tower measurements and suggests that a network of
towers would be required to accurately constrain the mul-
tiple regions and air basins in California. In principle,
measurements from multiple towers would also be com-
bined in a larger inverse analysis to provide more stringent
constraints on emissions from regions that influence several
towers. We consider a model-based design of a dedicated
tower network to be a natural extension of the work
described here.
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